Preparation and Reactivity of β-Zinc and Copper Phosphonates

Carole Retherford, Tso-Sheng Chou, Robert M. Schelkun and Paul Knochel*

The Willard H. Dow Laboratories, Department of Chemistry, The University of Michigan Ann Arbor, MI 48109

Summary: Several zinc and copper &metallated alkylphosphonates of zinc to dialkyl β *-bromoalkylphosphonates of type 1. This new class of* d^2 *2 have been prepared by the insem'on reagents reacts in excellent yields with a of broad range of electrophiles such as acyl chlorides, ahiehydes, enones, acetylenic esters, allylic and alkynyl halides, trialRyltin halides and nitro olejins.*

 α -Metallated phosphonates are versatile d^1 reagents¹ which have found numerous applications in organic syntheses.^{2,3} They can be readily prepared by the α -lithiation of phosphonates² or by the addition of organocopper derivatives to α , β -unsaturated phosphonates.³ β -Metallated phosphonates cannot be obtained by these methods and we report herein a zinc-mediated approach to this new class of reagents.¹ Thus, the treatment of the α , β bromophosphonate $1a^4$ with zinc dust⁵ in THF at 30 °C for 12 h affords the corresponding alkylzinc bromide in 90% yield.⁶ The addition of the soluble copper salt CuCN.² LiCl(1 eq.) at 0 °C transmetallates the intermediate zinc compound to the copper compound 2a. Substituted derivatives of **la** such as **lb-ld can be** prepared in two steps from dimethyl or diethyl methanephosphonate 7a-b in 30-35% overall yields (see Scheme II). These secondary bromides insert zinc even more rapidly (25 °C, 30 min.) and remarkably, the β -functionalized organometallics formed show no tendency to eliminate $BrZnP(O)(OR)₂$.

Scheme I

The copper-zinc reagents 2a-2d were found to react with various electrophiles in high yields (67-95%; see scheme I and Table I). Their reaction with trialkyltin chlorides affords β -trialkylstannylphosphonates (25 °C, 1 h); see entries 1 and 19. Attempts to transmetallate the tin derivative 3a to the corresponding β -lithiated phosphonate with butyllithium did not succeed. Aldehydes⁹ react in the presence of 2 equiv. of BF₃·OEt₂ (-78 °C to -15 °C, overnight) to give y-hydroxyphosphonates (see entries 2,3 and 18), whereas the reaction of organocoppers 2 with acyl chlorides¹⁰ furnishes y-ketophosphonates (0 °C, 2-5 h); see entries 4-6. The 1,4-addition of the reagent 2a to enones in the presence of chlorotrimethylsilane^{10,11} gives the desired 1,4-adduct in satisfactory yields (Me₃SiCl (2) eq.), -78 °C to 25 °C, overnight); see entries 7-8. 3-Iodo-2-cyclohexenone reacts in very high yields (-30 °C, overnight) with 2a and 2c affording the addition-elimination products **3i and Sb** respectively; see entries 9 and 20. Functionalized allylic bromides such as ethyl α -(bromomethyl)acrylate¹² or 3-bromo-2-t-butylsulfonyl-1-propene¹³ undergo a selective monocoupling reaction with 2a leading to the allylated phosphonates 3j (92%) and 3k (79%); see

Scheme II

entries 10 and 11. The Michael-addition of the reagent 2 to nitro olefins¹⁴ proceeds very efficiently (see entries 15. 16, 17 and 21) giving δ -nitrophosphonates.¹⁵ The addition of 2a to 3-nitro-3-heptene followed by a Nef reaction¹⁶ (O₃, -78°C, 3h; then Me₂S, -78°C to 25°C, overnight) allows in a one-pot procedure, a direct conversion of the intermediate nitronate 9 to the ketone 10 in 70% overall yield; see Scheme III. Finally the addition to acetylenic mono and diesters was found to give stereospecifically¹⁷ the syn-adducts 3l and 3m in 85% and 91% vield respectively (see entries 12, 13). The coupling of 2a with 1-bromooctyne¹⁸ furnishes the alkynylphosphonate 3n in 89% yield (see entry 14).

Scheme III

The easy insertion of zinc to β -bromoalkylphosphonates allows a general approach to a new class of d^2 reagents¹. After a transmetallation to the corresponding copper derivatives, they react with a wide range of electrophiles leading to a variety of polyfunctional phosphonates. Extensions of this methodology are currently underway in our laboratories.

Typical procedure: The addition of the copper-zinc reagent 2c to 3-iodo-2-cyclohexenone (entry 20 of Table I). (a) Preparation of the zinc-copper reagent 2c. A solution of 2.59 g (10 mmol) of dimethyl
2-bromopentanephosphonate 1c in 10 mL of THF was slowly added at 25 °C to 1.96 g (30 mmol) of zinc dust⁵
previously activated with temperature reaches 45 °C. GLC analysis of a hydrolyzed reaction aliquot showed the complete consumption of the starting bromide and the formation of dimethyl pentanephosphonate. The zinc reagent solution was added to a
solution of 0.72 g (8 mmol) of copper cyanide and 0.68 g (16 mmol) of lithium chloride in 8 mL of THF at -40 °C. T reaction mixture was then warmed up to 0 °C and was ready to use.

(b) Reaction with 3-iodo-2-cyclohexenone. The previously prepared solution of 2c was cooled to -78 $^{\circ}$ C and 1.33 g (6 mmol) of 3-iodo-2-cyclohexenone in 2 mL of THF was slowly added. The reaction mixture was warmed up to -30 ^oC and stirred 4 h at this temperature. After the usual work-up using ethyl acetate as extraction solvent an oil was obtained containing the desired product 5b and a substantial amount of dimethyl pentanephosphonate (which proved to be difficult to separate by chromatography). The residue was transferred to a short-path distillation apparatus and the dimethyl pentanephosphonate was separated by distillation (b.p. 52 °C at 0.03 mm Hg). The residue was then purified by flash chromatography (solvent MeOH/CH₂Cl₂: 5/95) to afford 1.56 g (95% yield) of the analytically pure ketophosphonate 5b (see entry 20 of Table I).

Acknowledgments: We thank the National Institutes of Health (GM 41908) for the generous support of this work and Jennifer L. Gage and Gregory F. Nieckarz for some preliminary experiments.

	Entry Copper-Zinc Reagent Electrophile		Products of Type 3-6		Yield (%) ^a
1 (EtO) ₂ P.	Cu(CN)ZnBr 2a	Bu3SnCl	(EtO)2P(O)(CH2)2SnBu3	3a	81
$\boldsymbol{2}$	2а	PhCHO	(EtO)2P(O)(CH2)2CH(OH)Ph	3Ь	96
3	2a	HexCHO	(EtO)2P(O)(CH2)2CH(OH)Hex	3c	88
4	2a	PhCOCl	$(EtO)_{2}P(O)(CH_{2})_{2}(CO)Ph$	3d	96
5	2a	c-HexCOCl	$(EtO)_{2}P(O)(CH_{2})_{2}(CO)c$ -Hex	3e	86
6	2a	PentCOCl	(EtO)2P(O)(CH2)2(CO)Pent	3f	84
7	2a	cyclohexenone	ဂူ P(OEt)2 Ph	3 _g	71
8	2a	benzylidene acetone	P(OEt) Me о	3 _h	88
9	2a	3-iodo-2-cyclohexenone	O P(OEt) ₂	3i	86
10	2a	ethyl α -(bromomethyl) acrylate	CO ₂ Et $\begin{array}{c}\n0 \\ \text{N} \\ \text{P(OEt)}_2\n\end{array}$	3j	92
11	2a	3-bromo-2-t-butylsulfonyl- 1-propene	$t-Bu-SO2$ O P(OEt) ₂ Ħ о	3k	79
12	2a	$H = CO2Et$	$(EIO)_2$ CO ₂ Et	3 _l	85
13	2a	$MeO2C = CO2Me$	н $(EtO)2$ Ë CO ₂ Me CO ₂ Me	3m	91
14	2a	$Hex = Br$	$(EtO)_{2}P(O)(CH_{2})_{2}=\text{Hex}$	3n	89
15	2a	1-nitropentene	(EtO) ₂ P(O)(CH ₂) ₂ CH(Pr)CH ₂ NO ₂	3 ₀	80
16	2a	β-nitrostyrene	(EtO)2P(O)(CH2)2CH(Ph)CH2NO2 3p		81
17 (MeO)	Cu(CN)ZaBr	β-nitrostyrene	0-N P(OMe)2	4а	91b,c
18	2 _b	PhCHO	Me Ő Me P(OMe) ₂ Pr ÓН	4 _b	81 _{b,d}

Table I. Preparation of the Polyfunctional Phosphonates 3-6 by the Reaction of the Copper-Zinc Reagents 2a-2d with Electrophiles

Table I. (Continued)

^a All yields refer to isolated yields of analytical pure products (purity $> 98\%$). Satisfactory spectral data (IR, ¹H and ¹³C NMR, mass spectra and high resolution mass spectra) were obtained for all compounds; ^b A mixture of two diastereoisomers is formed; ^c d.r. (diastereomeric ratio): 70:30; d d.r. = 64:36; ^c d.r. = 52:48.

References and Notes

- Seebach, D. *Angew. Chem. 1979,91,259; Angew. Chem. Int. Ed. Engl. 1979,18,239.*
- 2. (a) Corey, E.J.; Shulman, J.I. *J. Org. Chem.* **1970,35, 777;** (b) Kluge, A.F.; Cloudsdale, I.S. J. Org. *Chem.* **1979,44,4847; (c)** Collard, J.-N.; Benezra, C. *Tetrahedron Len. 1982,23,3725;* (d) Thangaraj, K.; Srinivasan, P.C.; Swaminathan, S. *Synthesis 1982, 855; (e)* Kawashima, T.; Ishii, T.; Inamoto, N. Chem. Lett. 1983, 1375; (I) Schaumann, E.; Fittkau, S. *Tetrahedron Lett.* **1984,25,2325;** *(g)* Mikolajczyk. M.; Balczewski, P. *Synthesis 1984,* 691; (h) Imamoto, T.; Sato, K.; Johnson, C.R. *Tetrahedron Lett. 1985,26, 783;* (i) Teulade, M.P.; Savignac, P.; Aboujaoude, E.E.; Collignon, N. *J. Organomet. Chem.* **1985,287, 145; (j) Aboujaoude,** E.E.; Lietje, S.; Collignon, N.; Teulade, M.P.; Savignac. P. *Tetrahedron Lett. 1985,26,4435; (k)* Kay, M.K.; Aboujaoude, E.E.; Collignon, N.; Savignac, P. *Tetrahedron Lett. 1987,28, 1263;* (1) Meijs, G.F.; Eichinger, P.C.H. *Tetrahedron Lett.* 1987, 28, 5559.
- 3. (a) Bodalski, R.; Michalski, T.J.; Monkiewicz, J. *Phosphorous* and Sulfur 1980,9, 121; (b) Schaumann, E.; Fit&au, S. *Synthesis 1983,449.*
- $rac{4}{5}$. Ford-Moore, A.H.; Howarth Williams, J. J. Chem. Soc. 1947, 1465.
- The zinc dust used was purchased from Aldrich (-325 mesh).
- 6. The polar phosphonate group considerably accelerates the rate of formation of the zinc organometallic (non-functionalized alkyl bromides usually cannot be converted to the corresponding organozinc compounds in THF).
- 7. We reported recently that β -cyano zinc and copper organometallics also do not eliminate the cyano group at temperature below 30 "C see: (a) Yeh, M.C.P.; Knochel. P. *Tetrahedron Len.* **1988,29,2395;** (b) Majid, T.N.; Yeh, M.C.P.; Knochel, P. *Tetrahedron Lett. 1989,30,5069.*
- 8. Hooz, J.; Gilani, S.S.H. *Can. J. Chem.* **1968,46,86.**
- 9. Yeh, M.C.P.; Knochel, P.; Santa, L.E. *Tetrahedron Lett. 1988.29, 3887.*
- lb. (a) Posner, G.H.; Whitten, C.E. *Org. Synth.* **1975,55,** 122; (b) Kncchel, P.; Yeh, M.C.P.; Berk, S.C.; Talbert. J. *J. Org. Chem.* 1988,53,2390.
- 11. (a) Corey, E.J.; Boaz, N.W. *Tetrahedron Lett. 1985.26, 6015,* 6019; (b) Alexakis, A.; Berlan, J.; Besace, Y. *Tetrahedron Len. 1986.27, 1047; (c)* Horiguchi, Y.; Matsuzawa, S.; Nakamura, E.; Kuwajima, 1. *Tetrahedron 'Lett.* **1986,27,4025;** (d) Nakamura, E.; Matsuzawa, S.; Horiguchi, Y.; Kuwajima, L *Tetrahedron Lett. 1986,27, 4029.*
- 12. (a) Ramarajan, K.; Ramalingam. K.; O'Donnell, D.J.; Berlin, K.D. Org. *Synth.* **1983,61,56; (b) Cassady,** J.M.; Howie, G.A.; Robinson, J.M.; Stamos, I.K. *Org. Synth.* 1983, 61, 77.
- 13. Auvray, P.; Knochel. P.; Normant, J.F. *Tetrahedron 1988,44,4495,4509, 6095.*
- Retherford, C.; Yeh, M.C.P.; Schipor, I.; Chen. H.-G.; Knochel, P. J. Org. *Chem. 1989,54,5200.*
- ::: *The* addition of **2b** to P-nitrostyrene has to be performed at -20 "C. We observed the formation of 27% of dimethyl 4-phenyl-2-propyl-3-butenylphosphonate (substitution of the NO₂ group by a dimethyl pentylphosphonate group) during the reaction of 2c to β -nitrostyrene if this reaction is performed at 0° C.
- 16. (a) McMurry, J.E.; Melton, J.; Padgett, H. J. *Org. Gem.* **1974,39,259; (b) Thompson,** W.J.; Buhr, C.A. J. *Org. Gem.* **1983,48,2769; (c) Barrett,** A.G.M.; Graboski, G.G.; Russell, M.A. J. Org. Chem. **1986,51,1012.**
- For a rationalization of this stereochemistry see: Krause, N. *Tetruhedron Lett.* 1989,30,5219.
- 18. Yeh, M.C.P.; Knochel, P. *Tetrahedron Lett.* **1989**, 30, 4799.